Advertisements

Top 10 Proposed Intercontinental Bridges And Tunnels


Post 8359

Top 10 Proposed Intercontinental Bridges And Tunnels

OLIVER TAYLOR MAY 3, 2017

http://listverse.com/2017/05/03/top-10-proposed-intercontinental-bridges-and-tunnels/

The ability to drive or hop a train from Alaska to Russia, or from London to New York, is one that will fascinate many. It shouldn’t, though, because it might be possible in the future, thanks to a series of proposals to build bridges and underwater tunnels that would link continents. This doesn’t mean that we presently can’t drive from one continent to another. Turkey is located in both Europe and Asia and has three bridges and a tunnel to allow movement to and from its European and Asian regions.

Here are ten more proposed bridges and tunnels to link other continents that are identified as distinct landmasses.

 

10Saudi-Egypt Causeway
Asia And Africa

Saudi-Egypt Causeway

Photo credit: Google

The Saudi-Egypt causeway is a proposed bridge that would link Egypt with Saudi Arabia. It would include both road and rail networks and would be built over the Red Sea. While its exact location remains in doubt, some believe it will be built between Nabq, Egypt, and Ras Alsheikh Hamid, Saudi Arabia, which are the closest points between both countries, while making a detour at the Saudi island of Tiran.

Saudi Arabia’s king Salman bin Abdel Aziz hinted at the intention to build the bridge during a state visit to Egypt in 2013. According to Egyptian president Abdel Fattah el-Sisi, the bridge would be named “King Salman bin Abdel Aziz Bridge,” after the king. Saudi Arabia’s plans to build the bridge, which is estimated to cost $3–4 billion, is more of politics than necessity. The kingdom simply wants to prove to its regional rival, Iran, that it maintains a strong relationship with Egypt. Besides building the bridge, Saudi will also fund Egypt’s oil needs for five years.

9Bridge Of The Horns
Asia And Africa

Bridge of the Horns

Photo credit: NASA

The Bridge of the Horns is a proposed bridge that will link Djibouti, which neighbors Somalia in the Horn of Africa, with Yemen. When completed, it will have six lanes for vehicles and a railroad for trains. Its construction was proposed by Tarek Bin Laden Construction, which is owned by the eponymous half-brother of the infamous Al-Qaeda kingpin.

Critics have criticized the construction of the 28.5-kilometer (17.7 mi) bridge, which was initially estimated to cost $70 billion, for its high cost and supposedly poor choice of location, which is an earthquake-prone zone. In 2008, Djibouti’s then–prime minister Dileita Mohamed Dileita denied his government’s involvement in the proposed bridge, saying the project “fell on them from the sky.”

However, preliminary works for the bridge’s construction have been completed, and construction is being planned. It will be funded by the Noor City Development Corporation of Dubai, which will also build two cities called Al Noor (City of Light) on both sides of the bridge. There are also plans to build an airport and an extensive road network that will lead from Yemen’s Al Noor to Dubai in the United Arab Emirates. This means it would be possible to travel from Africa to Dubai by road. The Bridge of the Horns is estimated to open in 2020 at the cost of $20 billion.

 

8Bering Strait Tunnel
Asia And North America

Bering Strait Tunnel

Photo credit: J. Craig Thorpe

There have been several proposals to link Siberia with Alaska. The first of such proposals was made in the 1890s, when engineer Joseph Strauss proposed the construction of a railroad between Russia and Alaska. Tsar Nicholas II of Russia accepted a similar proposal in 1907, but it never came to fruition due to the outbreak of World War I. The proposal was reawakened in 2011. This time, it is a 105-kilometer (65 mi) underground tunnel that will be called the Bering Strait Tunnel.

The Bering Strait Tunnel would be a network of three tunnels: one to travel from Russia to Alaska, another to travel from Alaska to Russia, and a third in between, which will be reserved for emergencies and will have entry and exit points with the other tunnels. Each of the two main tunnels will have two railroads, one for high-speed trains and another for slower trains, as well as one or two lanes for vehicles. There will also be pipelines for water, gas, oil, and fiber-optic cables. The Bering Strait Tunnel is estimated to cost about $35 billion and would take 12 to 15 years to complete if approved for construction.

7Sicily-Tunisia Tunnel
Europe And Africa

Sicily-Tunisia Tunnel

The proposed Sicily-Tunisia tunnel would link mainland Italy with Tunisia via Sicily. The proposal involves the construction of a 3.3-kilomter (2.1 mi) bridge to link Reggio Calabria in mainland Italy with Messina in Sicily. Then, Sicily and Tunisia will be linked by a network of five underground tunnels. Four of the tunnels will have traffic moving in opposite directions, while the fifth will be reserved for emergencies.

Researchers at the Italian Agency for Alternative Energies have called on the governments of both countries to build four artificial islands between Tunisia and Sicily with the rocks excavated from the tunnels. They estimated the project to cost $28 billion.

6China-Russia-Canada-America Line
Asia And North America

China-Russia-Canada-America Line

Photo credit: Asia News

The China-Russia-Canada-America line is a proposed railroad that will run from China through Russia, Alaska, and Canada before ending in the mainland United States. Russia and Alaska will be linked by a 201-kilometer (125 mi) underwater tunnel in the Bering Strait. China claims that constructing the tunnel will not be a problem, as it already possesses the required technology, which it will use to build the Fujian-Taiwan underwater railroad that will link China with Taiwan.

Information regarding the plans was revealed by Wang Mengshu of the Chinese Academy of Engineering. No other government official has confirmed the project, and it is unclear whether China has consulted Russia, Canada, and the US regarding it. If the railroad is ever built, it would take two days to travel from China to the United States.

 

5Transatlantic Tunnel
Europe And North America

Transatlantic Tunnel

Photo credit: www.tunneltalk.com

The Transatlantic Tunnel is a proposed underwater railroad that would link New York with London, Paris, or Brussels. It was proposed by Ernst Frankel and the late Frank Davidson, who worked on the Channel Tunnel (aka the “Chunnel”) that links England with France. The Transatlantic Tunnel would be built under the surface of the Atlantic Ocean and would be anchored to the seabed by spring-loaded wires. Exactly how far below the surface the tunnel is would depend on how much the North Atlantic warms in the future and thus how many icebergs would be present.

If constructed, the tunnel would feature superfast magnetic-levitation trains that would shuttle between London and New York in just four hours. However, the project has been criticized for its high cost (almost $200 billion) as well as the problems associated with running a 5,600-kilometer-long (3,500 mi) tube across the ocean. According to the Discovery Channel’sExtreme Engineering, the Transatlantic Tunnel won’t be a reality anytime soon because the required funds and technology will not be available beforethe year 2099.

4Darien Gap Highway
North And South America

iStock-506844914
Guinness World Records recognizes the Pan-American Highway, which stretches from Prudhoe bay, Alaska, to Tierra del Fuego, Argentina, as the world’s longest road network. The highway is not a single highway but rather the interlinked highways of several North and South American countries. Yet, it is impossible to drive from North America to South America, specifically at the border between Panama and Colombia, which is covered by a thick jungle called the Darien Gap.

Previous attempts to build a highway across the gap have met brick walls in the form natives and conservationists who claim that the highway will destroy the forest. One plan to build a US-funded highway across the gap was thwarted in 1974, and another that was made in 1992 was abandoned.

Today, road travelers bypass the gap by either boarding a boat or airplane, although an expedition crossed it in a Land Rover in 1959. But this is almost impossible today thanks to the presence of criminals and drug traffickers in the vast jungle. One proposal to bypass the gap and still have a road network that will connect North and South America is the construction of an underwater tunnel between Panama and Colombia.

3Gibraltar Tunnel
Europe And Africa

Strait of Gibraltar

Photo credit: NASA

Proposals to build an underwater tunnel through the Strait of Gibraltar to link Europe with Africa have been in the works since 1930, when Spanish engineers proposed a 32-kilomter (20 mi) tunnel from Spain to North Africa. Spain and Morocco are currently working on building such a tunnel, which will be called the Gibraltar Tunnel.

The two countries’ closest points are just 14 kilometers (9 mi) apart. In fact, it is possible to see the coastline of one country from the other. But the tunnel will not pass through this narrow route because of the presence of hardened rock underneath. Rather, it will run from Cape Malabata, Morocco, to Punta Paloma, Spain, a distance of 28 kilometers (17 mi). The tunnel itself will be 40 kilometers (25 mi) long because of bends.

The tunnel is estimated to cost €6.5–13 billion, and both countries have applied for funding from the European Union. Before settling for the tunnel, both countries proposed building a bridge but abandoned the idea over concerns that it might not withstand the wind and water currents of the region.

2Intercontinental Peace Bridge
Asia And North America

Intercontinental Peace Bridge

Photo credit: Popular Mechanics

The Intercontinental Peace Bridge is a proposed 88-kilometer-long (55 mi) bridge to link Siberia and Alaska. It was proposed by award-winning structural engineer T.Y. Lin during the Cold War and would be built over the Bering Strait. Lin was so serious about the bridge that he gave President Ronald Reagan a 16-page pamphlet detailing his plans for the bridge in 1986. This move internationalized his idea and won him some fans and critics.

He renewed his proposal in 1994, when he upgraded his plans to include a pipeline network to transport oil and gas from Russia to North America. His revised proposal came after Russia turned its attention to the vast, untapped oilfields of Siberia. The Intercontinental Peace Bridge is not Lin’s only proposal to link two continents. He also proposed the construction of a bridge over the Strait of Gibraltar to link Spain and Morocco.

1Trans Global Highway
Worldwide

Trans Global Highway

Photo credit: Frank Didik

The Trans Global Highway is a proposed highway to link all the continents of the world. It was proposed by Frank Didik. It is not a new highway per se but rather the standardization and connection of existing highways and the construction of new highways and tunnels where necessary. If the proposal is ever realized, it would be possible to travel around the world by road.

Besides the road, the highway would have pipelines for oil, gas, water, and communication cables. Didik believes that the only hindrance to the achievement of the Trans Global Highway is the hatred among various neighboring states, which will refuse to maintain road networks to their neighboring enemies.

Oliver Taylor is a freelance writer and bathroom musician. You can reach him atOliverNickTaylor@gmail.com

Advertisements

Video: How removing tattoos with lasers works


Post 8324

 Video: How removing tattoos with lasers works

10/30/14 9:01pm

Smarter Every Day takes an in-depth look at something super cool: removing tattoos with the help of lasers. The science behind it is fascinating, all the zapping lasers do is basically break down the bigger ink blobs inside your skin and let your body’s white blood cells and liver take care of the rest of the removal process.

But just because you can remove a tattoo with laers doesn’t mean you should start thinking tattoos aren’t permanent. It’s a helluva process.

 


SPLOID is delicious brain candy. Follow us on Facebook or Twitter.

Drought-Stricken Chinese City Proposes Mega Pipeline to Pump Water From Siberia


Post 8275

Drought-Stricken Chinese City Proposes Mega Pipeline to Pump Water From Siberia

Tuesday 1:00pm

Lake Baikal, the largest freshwater lake in the world by volume. (Image: BDK)

The northwest Chinese city of Lanzhou has a serious water shortage problem. To address the issue, its urban planners have sketched out an ambitious plan to deliver water from Siberia’s Lake Baikal to the city along a 1,000-mile-long pipeline. Getting approval for the project will be a monumental challenge, but it may be a sign of things to come for other water-poor regions of the world.

As history has shown, China has a soft spot for mega projects, whether it be the construction of the Great Wall of China or the colossal Three Gorges Dam. The latest proposal, devised by the Lanzhou Urban and Rural Planning and Design Institute, calls for a similarly ambitious project, one connecting the southern tip of Lake Baikal in Siberia to the drought-stricken Gansu region in northwest China.

The 1,000-mile pipeline would extend from the southern tip of Lake Baikal to Lanzhou in Gansu province. (Image: Google Maps)

Lake Baikal is the largest freshwater lake in the world by volume, containing roughly 20 percent of the world’s unfrozen surface water. The pipeline would extend for 1,068 miles (1,720 km) along the Hexi Corridor, a desert region that runs between the Tibetan Plateau and the Gobi Desert. The pipeline would cut a swath straight through Mongolia.

The Lanzhou planners say the chronic water shortage is stunting the region, which experienced just 15 inches (380 mm) of rain last year.

“The pipeline will boost the utilization rate and business prospects of [Gansu province], improve the ecological environment of Northwest China, and promote Lanzhou’s economic growth,” the authors wrote in the proposal, titled “Vision for Urban Planning 2030.”

The proposal is calling attention toChina’s ongoing water shortages. The country has 20 percent of the world’s population, but only 7 percent of its fresh water. Back in 2005, China’s former minister of water resources warnedthat many northern cities, including Lanzhou, would run out of water by 2020.

Unsurprisingly, the Lanzhou plan has been met with criticism. Some are questioning the feasibility of the plan, citing the tremendous costs involved, and the difficulties of coordinating the countries and local jurisdictions involved.

“To declare the global plans of the transfer of fresh water to China, without detailed calculations, is total folly,” noted environmentalist and economist Viktor Danilov-Danilyan told the Siberian Times. “It would require big funds and the price of the water will be very high. Almost certainly this project is simply unprofitable.”

That said, Russia may be willing to entertain the idea. A year ago, Russia’s agriculture minister proposed a similar pipeline between Kazakhstan and Xinjiang, saying it would only happen “under the condition of full compliance with the interests of Russia, including environmental.” The Russian petro-state—i.e. a country with an economy largely driven by its oil and gas interests—with its abundance of fresh water, may be willing to capitalize on its commodities even further, becoming the world’s first hydro-state.

“Water is the same resource as oil, gas, gold, and sooner or later we will start to sell it,” noted Stepan Svartsev from Tomsk State University in the Guardian.“Our country has very large reserves and certain volumes could be sold.”

In addition to the political and diplomatic hurdles, there’s also the environment to consider. An environmental impact assessment would have to be conducted along the 1,000 mile corridor. The effects of the pipeline on Lake Baikal would also have to be addressed. This source of fresh water is a haven for 1,200 animal species and 600 types of plants, of which half are local to the region.

It’s also important to point out that Lake Baikal is already facing severe environmental problems. Once prized for its crystal clean water, scientists say its southern-most areas have become inundated with algae, making it unsafe to drink. Surface runoff of nutrients into the lake, plus warming conditions, are allowing the algae to thrive. Adding insult to injury, water levels have dropped in recent years, and residents near the lake have already been told to cut down on water usage.

Certinaly, it’ll be interesting to see how this story plays out. The proposal from Lanzhou may be rejected, but that doesn’t mean other pipeline plans won’t work out, both in China and abroad.

The United States and Canada should take notice, particularly consideringwater shortages down south—especially in California and Nevada—and the grim prospect of decades-long megadroughts. Eventually, the two countries may have to start negotiations about sharing water and building pipelines.

Or more practically, we should push for industrial-scale desalination. Approximately 97 percent of the world’s water is tied up in our oceans, but we can’t drink it. Should gains in solar power efficiency continue, we should start to see the first large-scale desalination plants appear by the 2030s.

[Guardian, Global Times]

Internet’s #1 Selling Tactical Flashlight? Still, Lumify X9


Post 8178

Internet’s #1 Selling Tactical Flashlight?
Still, Lumify X9

…But, Is It Worth It?

If you’ve been on the internet in the past 12months, you would of 100% of seen an ad for the infamous –Lumify X9.

It’s been super popular across the world.

The Top #1 Selling ‘Tactical Flashlight’ in 2015 and 2016.

Stock is also “selling out fast” in the lead up to the December Christmas holidays.

But Why Is Lumify Still The Bestselling In The World?

Well, a number of reasons:

1) It’s the cheapest, compared to it’s same class competitors – Only $29 vs $116.99

2) It’s Massively Discounted Online – Up to 75% Off Retail Price, on official sale sites like this one here.

3) It’s simply the best tactical flashlight, in it’s class @ 800 lumens.

UPDATE: From Monday 26 December to Monday 2 January, Lumify-X9 Flashlight is offering a special 75% DISCOUNT

Discount link: special offer: Lumify-X9 Flashlight

What Can You Use It For?

“The truth is, most people underestimate the importance of owning a great flashlight. These days, power outages are becoming more common in heavy storms – it’s more important than ever to have the right gear and be ready for a blackout.”

Tactical Flashlights aren’t like average home flashlights:

Lumify’s Tactical Flashlight is built for rugged use, high performance and reliability.

It’s super bright LED technology, shoots powerful white light hundreds and hundreds of meters away.

Specifications

They have settings like: Beckon/ Strobe, High Focus, High Beam and SOS – alerting with Super Bright Strobe, focusing on something far away or emergency signaling for help.

The case is built from hardened aluminum. It is light weight, but strong enough material to last any lifestyle in any environment.

Why The Low, Low Price?

Up until recently ‘Tactical Flashlights’ – haven’t been available for purchase by the public.

An online company got a large surplus amount of excess stock.

They began selling them to the public at affordable, discount prices ($29/ea).

Before then these Tactical flashlights were only available at nearly $300 each!

However, rumor says that the stock is quickly running out due to huge popularity. Once it’s sold out, they’re does appear to be anymore…

Click Here – To Check Stock Availability

What Are People Using Their’s For?

Believe it or not, most men and women alike, don’t even own a flashlight!

There’s literally hundreds of good scenarios for owning a high-quality, strong flashlight.

The most popular include:

    • In a home emergency; e.g. a power outage, heavy storm.

 

    • In the trunk of your car for a late night breakdown, in the middle of nowhere (It’ll never happen to me…YEAH RIGHT!)

 

    • Safely doing your late night dog walk

 

    • Perfect for camping

 

    • Checking the bottom of your property, from the safety of your home

 

    • Scaring wild animals away

 

    • Working in dark spaces

 

Would We Recommend Getting It?

Based on value and quality – yes. There are brighter lights of course, but they start at $249+. This is a bargain of a deal, based on it’s performance.

Get Your 75% OFF Deal From Here (limited stock)

CHECK AVAILIBILITY

Every US River Visualized in One Glorious Map


Post 8052

Every US River Visualized in One Glorious Map

Here’s The Fascinating Way The U.S. Military Waterproofed Its Jeeps During World War II


Post  8050

Here’s The Fascinating Way The U.S. Military Waterproofed Its Jeeps During World War II

6/21/16 12:28pm

To allow U.S. military vehicles to drive through deep water during World War II beach landings, the armed forces devised a fascinating method of waterproofing involving a goopy putty called “Asbestos Waterproofing Compound.” Here’s a video showing all the steps needed to keep that Jeep moving through the deep stuff.

Water and internal combustion engines just don’t go together, we’ve shown that time and time and time again. But during World War II, particularly in Europe, allied forces needed to conduct beach landings, wherein soldiers and vehicles were dropped from landing crafts, often far from the shore.

To withstand these beach landings, military vehicles had to be thoroughly waterproofed. The air intake and gasoline vent had to be extended, and pretty much every electronic connector and button had to be covered in what the U.S. military called AWC for Asbestos Waterproofing Compound.

The military’s waterproofing kit contained not just the big AWC patty, but also wire, friction tape and rubber impregnated tubing. When done properly, the U.S. Army Signal Corps claimed, the sealing job could keep a Jeep running for up to six minutes in depths of up to 3.5 feet of water.

That’s a full foot higher than the water fording rating on the new Jeep Wrangler, and means the little Jeep can drive with water filling the entire cabin all the way up to the base of the windshield.

Those little Willys MBs are beasts.

 

The Battle to Bring Offshore Wind Power to America


Post 8048

The Battle to Bring Offshore Wind Power to America

Yesterday 11:00am

The steel towers loom in the distance, like shiny toy soldiers arranged in formation. As our boat approaches, the dizzying size of the machines becomes clear. A few minutes later, I’m standing right next to one, holding the guardrails and craning my head to take it all in. The boat bucks like a rollercoaster as giant waves crash against the bow. Salty spray lashes my eyeballs. I try not to vomit.

Up close, the machines are not toy-like at all. They are aliens, fifty-story monoliths, each crowned with three enormous, outstretched blades that dazzle in the morning light of this crisp October day. This is America’s first offshore wind farm—a pilot project compared with the vast offshore energy plants in European waters—but still, a hard-won victory.

Anchored to the seafloor twenty miles south of Rhode Island, the five turbines comprising Deepwater Wind’s $300 million Block Island Wind Farm wereerected over the summer. The blades were unlocked several weeks back, and in November, they’ll start generating electricity—30 megawatts (MW) at peak capacity, which is enough to power 17,000 homes.

To the dozens of men and women present on today’s boat tour—executives from Deepwater Wind, Rhode Island state politicians, labor leaders and environmentalists—the wind farm is a sign of things to come.

“It’s going to be a stepping stone,” says Walt Trombly, a union representative for the Utility Workers Union of Rhode Island. “The entire country is going to see this.”

If the country likes what it sees, offshore wind could become a cornerstone of America’s bid to wean off fossil fuels. Proponents imagine a future where coastlines from the Carolinas to Maine are lined with thousands of turbines, siphoning energy out of fierce north Atlantic winds and delivering carbon-free power to millions. But not everyone wants that future, and even those who do acknowledge the enormous political, economic, and technological hurdles we need to overcome before it arrives.


It’s a beautiful idea, that the solution to our oil and gas addiction is already at our fingertips. That, with a concerted effort, we could halt climate change by tapping the strong, sustained winds gusting just offshore—an endlessly renewable energy source.

The United States has some of the best offshore wind resources in the world. According to the Department Energy, our “technical offshore potential” is more than 2,000 gigwatts (GW) of power, which translates to double the electricity generated by all oil, coal, and gas-fired power plants last year. Harnessing that full potential would take a mind-boggling number of turbines, but even a fraction of the energy contained in stiff offshore breezes could go a long way toward meeting high power demands along densely populated coastlines.

The northeast, with its fair weather and shallow continental shelves, is considered the ideal place to get started.

“The resource is enough to run all electrical needs for all coastal states from Massachusetts to North Carolina, and much more,” says Willet Kemptom, a professor at the University of Delaware’s School of Marine Science and Policy.

Deepwater wind executives, labor leaders and environmentalists speak to reporters on a recent tour of the Block Island Wind Farm. Photo: Jesse Burke for Gizmodo

Some of the technology we need already exists. Thanks to decades of government incentive programs, offshore wind is taking off in Europe, with turbine costs falling fast as production becomes more industrialized. The offshore wind industry still only accounts for 1.5 percent of the EU’s electricity production, but with three thousand turbines producing 41 terawatt-hours of energy last year, it’s nothing to sniff at.

But in America, offshore wind has made little progress, thanks to high initial costs, lack of political leadership, and fierce pushback from oceanfront communities who don’t want their views marred by gigantic machines. “It’s a typical not-in-my-backyard scenario, and I get it,” says Fiore Grassetti, a steel worker who’s helped install dozens of land-based turbines in New England. “If they’re placed in the wrong location, I agree.”

The first offshore wind project to receive serious vetting in the United States was Cape Wind, a $2.6 billion proposal to build 130 turbines in the Nantucket Sound off Cape Cod. But after receiving state and federal approval back in 2009 and 2010, the project was held hostage for years by an opposition movement spearheaded by a Koch brother and backed by Mitt Romney, among other wealthy and well-connected residents of the Cape. Not only do Cape Wind’s opponents say the project would cause significant “visual pollution,” they insist it will raise the cost of electricity rather than lower it. Last year, after endless construction delays, Cape Wind lost its power purchase agreements with utility companies. It now seems unlikely the project will ever break ground.

Looking up at the steel jacket foundation of an offshore wind turbine. Photo: Jesse Burke for Gizmodo

Perhaps it’s no surprise that the first offshore wind farm to succeed where Cape Wind failed is much smaller, and addresses a much more glaring energy issue. Lacking a direct connection to Rhode Island’s power grid, the 1,000 year-round residents of the sleepy community of Block Island have, for decades, been forced to burn diesel fuel shipped over from the mainland—a dirty and extremely pricey way of keeping the lights on.

Now that Block Island is producing power, it’s been integrated into the system. In June, utility company National Grid—which is buying electricity from Deepwater Wind and selling it to customers throughout the state—installed a submarine cable connection linking the wind farm and the nearby community to the mainland. The clean energy Block Islanders will start buying this month isn’t exactly a bargain: the first year power-price is 24 cents per kilowatt hour, compared with an average of 14 cents per kilowatt hour throughout the state. But it’sabout 40 percent less than the cost of diesel. The island will also be avoiding an estimated 40,000 tons of carbon emissions per year, and as an added bonus, that new submarine cable includes a fiber optic connection. For the first time, residents will have high-speed internet.

Despite the project’s apparent benefits, not everyone on Block Island is thrilled about it. Some residents see the wind farm as a political charade, arguing that they are bearing the burden of above-market energy costs to enrich private investors, and that the long-term savings will be minimal. As with Cape Wind, opponents feel they are trading environmentally-destructive carbon pollution for economically-destructive visual pollution. “No one can argue that the loss of [Block Island’s] viewshed will not harm my business and any other on the Island,” Block Island grocery store owner Mary Jane Balser wrote in a letter to the Block Island Times in 2014.

Matthew Morrissey, Vice President of Massachusetts for Deepwater Wind, says that the controversy over the Block Island Wind Farm is relatively small. After all, Block Island’s town council and resident’s association supported the project, as did recent Rhode Island governors, state senators, environmental groups, labor union leaders, and the Obama administration.

“Based on the Cape Wind experience, you’d think there’d have been much more pushback,” he says. “I think overwhelmingly, the citizens appreciated the cutting of the energy cost, the clean nature of our fuel source, and the fiber optic line that gave them fast internet.”

At this point, only time will tell if he’s right.


As our boat weaves between turbines like a guppy amongst whales, I learn that there’s far more to the structures than meets the eye. Designed by French energy company GE, Block Island’s 6 MW, 589 foot-tall Haliade turbines employ new “direct drive” technology, which replaces the rotating gearbox of older models with a giant, permanent magnet generator. “This reduces mechanical systems inside the machine,” GE project director Eric Crucerey says. “Fewer pieces mean less maintenance.” In fact, if all is running well, nobody will need to be inside the turbines at all.

The generator is located at the top of the turbine, inside a 400-ton, schoolbus-sized steel house called the nacelle. Directly in front of it lies the rotor hub, which supports three 240 foot-long, fiberglass blades that sweep an area larger than three football fields. The nacelle also includes a control room, with computer systems that automatically monitor windspeed and direction and adjust the blades accordingly. “These blades are not dumb, static things,” Morrissey says, sweeping his arm out across the sky. “They’re highly tuned, sensitive instruments.”

The top of this Haliade turbine includes a nacelle, where the generator and rotor are housed, a helipad (yellow structure) and three enormous fiberglass blades. Photo: Jesse Burke for Gizmodo

If the nacelle includes the brain and muscles of the turbine, the tower—an enormous metal tube built of three 200-ton sections of cast steel—is its backbone. The Block Island Wind Farm towers were assembled over the summer with the help of Brave Tern, an aircraft carrier-esque Norwegian vessel that can lift a gigantic crane hundreds of feet out of the water on four enormous stilts. The tower, in turn, rests on a 1,500-ton steel jacket foundation, which is anchored to the seafloor 100 feet down.

The turbines are hardy things, designed to endure everyday wind and waves, but also powerful storms and even hurricanes. They start spinning to generate power at wind speeds of approximately 6.5 mph, and from there, run merrily along until wind speeds approach that of a strong tropical storm. “When wind speeds get up to 55 miles per hour, we will feather the blades so they’re not creating friction with the wind,” Morrissey says. With the blades in a safer configuration, Morrissey reckons they can withstand gusts of over 200 mph. “They’re insured, which says something,” he notes.

Under normal conditions, electricity generated by a turbine is transmitted via cables down the length of the tower to the seafloor, then to a substation located on Block Island. From there, it’s supplied to the island’s residents and fed back into Rhode Island’s grid. As Catharine Bowes of the National Wildlife Federation points out, one turbine is needed to power Block Island, even at peak summertime usage (approximately 4 MW). “All of the surplus goes to the mainland,” she says.

How big that surplus is depends on how fast the wind blows and how well the machines perform, something Deepwater Wind will be monitoring closely. On average, Wilhelm says, offshore wind operations run at 45 percent capacity. Land-based wind farms in the Great Plains run at about 33 percent capacity, while solar farms reach capacities of up to 20 percent.

While each of the turbines is designed to operate autonomously and can be controlled remotely, workers will still have to enter them periodically for maintenance. Normally, they’ll take a boat out, scale ladders attached to the jacket foundation, enter at the base of the tower, and take the long elevator ride to the top. But in a pinch, workers can also airlift in and out via a helipad located next to the nacelle.

In a truly dire situation, Crucery says, a person can sky-dive to the base of the turbine using rappelling gear attached to the helipad. Similar gear can also be used to exit the turbine from the tower, should the elevator break down. “People need training to be inside this machine,” Crucery says.

Indeed, these safety measures serve as a reminder that, while working on a wind turbine is much safer than working on an explosion-prone oil rig or inside a coal mine, clean energy plants are not risk-free. Human accidents involving wind turbines are underreported, but data compiled by theCaithness Windfarm Information Forum indicates that blade failures represent the biggest danger, followed by turbine fires.

Bracing myself against winds that could fling me into the sea if I let my guard down, I try to imagine making the six hundred-foot leap out of a flaming nacelle. If Deepwater Wind’s reticence to discuss emergency evacuations is any indicator, I’m not the only one who finds the scenario a bit frightening.


“Three hundred local tradesmen worked on this wind farm,” says Scott Duhamel, a labor activist from Rhode Island’s Building and Construction Trades Council with a thick Boston accent. For him, there’s nothing better than finishing a big construction project, and the turbines directly ahead of us are—quite literally—as big as they come. “For years, now, they get to drive by and say, ‘I built that, I worked on that, I did that.’ The first one in America.”

A swell of pride at having planted the very first wind turbines in US waters was palpable among everyone I spoke with at on the recent Block Island Wind Farm tour, which was organized by wind energy supporters at the Rhode Island Building and Construction Trades Council, the BlueGreen Alliance, and the National Wildlife Federation. So was a sense that the momentum generated here needs to be maintained. “We saw a job opportunity,” says Rhode Island senator Joshua Miller, who helped pass legislation that required utilities to buy Deepwater Wind’s electricity. “Whoever was first in this part of America was going to set up the platform for [offshore wind] jobs.”

Job creation is often touted as a reason to support wind energy, even if you don’t care about climate change. The reality is that switching to clean power at industrial scales is going to require industrial-scale manufacturing and development, such as we’re starting to see in Europe, where most of the Block Island Wind Farm’s parts were built. The DOE estimates that an offshore wind industry could support 600,000 new jobs on US shores by 2050.

To Jimmy Shillitto, Vice President for Local 1-2 Utility in New York, adaptation to the shifting energy landscape is inevitable. “Times are changing,” he says. “If we don’t get involved, we’ll die off.”

Rhode Island may be first out the gates on offshore wind, but other states are poised to catch up quickly. Over the summer, Massachusetts passed a bill that will require its utilities to purchase 1,600 MW of electricity from offshore wind farms by 2027. The state of New York, meanwhile, recently approved a Clean Energy Standard that compels New York City to draw 50 percent of its power from renewable sources by 2030.

Will the industry catch on elsewhere in the northeast? According to Wilhelm, electricity from offshore wind is still about double the market cost, “which is kind of discouraging,” he admits. States that haven’t been eager to pick up some of that cost may be waiting for a signal from the feds—say, a tax creditsimilar to the soon-expiring production tax credit that’s driven the price of land-based wind power down. Of course, national energy policies depend entirely on who we elect into office this November and in the years to come.

There’s also the issue of actually using the seafloor. The Obama administration has designated 11 wind energy areas in the northeast, but many more are needed for offshore wind energy to make a dent in our carbon pollution. State governments and energy companies need to do environmental vetting, to ensure they aren’t building on top of sensitive habitats, or during key migration periods for birds and whales. These processes take time.

Looking further into the future, new technologies will be needed to expand offshore wind into other environments. “On the west coast, the continental shelf gets really deep really fast,” says Jose Zayas, director of the DOE’s Wind Energy Technologies Office. “In the Gulf of Mexico, you’ve got to deal with hurricane survivability. The Great Lakes tend to freeze, which is problematic from a structural perspective. The ocean is a complicated environment.”

Looking back on America’s first offshore wind farm. Photo: Jesse Burke for Gizmodo

Deepwater Wind, for its part, has already secured rights to another lease area, about 20 miles east of the Block Island Wind Farm, and is in the process of negotiating a power purchase agreement with Long Island for the first phase of the site’s development, the 90 MW South Fork Wind Farm. If the deal is approved, construction could begin as soon as 2019.

As our boat crests around the craggy southeastern shore of Block Island, past cliffs and harbors dotted with picturesque New England homes, the turbines recede from view. The blades, which we could see swaying lazily in the breeze from directly underneath, now appear suspended in place against the brilliant blue horizon. Looking back on the wind farm from far away, I’m once again reminded what a small step this is compared with what’s needed to transform our grid and prevent dangerous climate change.

But small steps are how new ideas take root. Whether these turbines are the first ambassadors of our brave new energy future, or a curious blip in the history books, I can’t yet say. We’ll have to see how the winds blow.

Maddie is a staff writer at Gizmodo