Advertisements

Internet’s #1 Selling Tactical Flashlight? Still, Lumify X9


Post 8178

Internet’s #1 Selling Tactical Flashlight?
Still, Lumify X9

…But, Is It Worth It?

If you’ve been on the internet in the past 12months, you would of 100% of seen an ad for the infamous –Lumify X9.

It’s been super popular across the world.

The Top #1 Selling ‘Tactical Flashlight’ in 2015 and 2016.

Stock is also “selling out fast” in the lead up to the December Christmas holidays.

But Why Is Lumify Still The Bestselling In The World?

Well, a number of reasons:

1) It’s the cheapest, compared to it’s same class competitors – Only $29 vs $116.99

2) It’s Massively Discounted Online – Up to 75% Off Retail Price, on official sale sites like this one here.

3) It’s simply the best tactical flashlight, in it’s class @ 800 lumens.

UPDATE: From Monday 26 December to Monday 2 January, Lumify-X9 Flashlight is offering a special 75% DISCOUNT

Discount link: special offer: Lumify-X9 Flashlight

What Can You Use It For?

“The truth is, most people underestimate the importance of owning a great flashlight. These days, power outages are becoming more common in heavy storms – it’s more important than ever to have the right gear and be ready for a blackout.”

Tactical Flashlights aren’t like average home flashlights:

Lumify’s Tactical Flashlight is built for rugged use, high performance and reliability.

It’s super bright LED technology, shoots powerful white light hundreds and hundreds of meters away.

Specifications

They have settings like: Beckon/ Strobe, High Focus, High Beam and SOS – alerting with Super Bright Strobe, focusing on something far away or emergency signaling for help.

The case is built from hardened aluminum. It is light weight, but strong enough material to last any lifestyle in any environment.

Why The Low, Low Price?

Up until recently ‘Tactical Flashlights’ – haven’t been available for purchase by the public.

An online company got a large surplus amount of excess stock.

They began selling them to the public at affordable, discount prices ($29/ea).

Before then these Tactical flashlights were only available at nearly $300 each!

However, rumor says that the stock is quickly running out due to huge popularity. Once it’s sold out, they’re does appear to be anymore…

Click Here – To Check Stock Availability

What Are People Using Their’s For?

Believe it or not, most men and women alike, don’t even own a flashlight!

There’s literally hundreds of good scenarios for owning a high-quality, strong flashlight.

The most popular include:

    • In a home emergency; e.g. a power outage, heavy storm.

 

    • In the trunk of your car for a late night breakdown, in the middle of nowhere (It’ll never happen to me…YEAH RIGHT!)

 

    • Safely doing your late night dog walk

 

    • Perfect for camping

 

    • Checking the bottom of your property, from the safety of your home

 

    • Scaring wild animals away

 

    • Working in dark spaces

 

Would We Recommend Getting It?

Based on value and quality – yes. There are brighter lights of course, but they start at $249+. This is a bargain of a deal, based on it’s performance.

Get Your 75% OFF Deal From Here (limited stock)

CHECK AVAILIBILITY

Advertisements

Every US River Visualized in One Glorious Map


Post 8052

Every US River Visualized in One Glorious Map

Here’s The Fascinating Way The U.S. Military Waterproofed Its Jeeps During World War II


Post  8050

Here’s The Fascinating Way The U.S. Military Waterproofed Its Jeeps During World War II

6/21/16 12:28pm

To allow U.S. military vehicles to drive through deep water during World War II beach landings, the armed forces devised a fascinating method of waterproofing involving a goopy putty called “Asbestos Waterproofing Compound.” Here’s a video showing all the steps needed to keep that Jeep moving through the deep stuff.

Water and internal combustion engines just don’t go together, we’ve shown that time and time and time again. But during World War II, particularly in Europe, allied forces needed to conduct beach landings, wherein soldiers and vehicles were dropped from landing crafts, often far from the shore.

To withstand these beach landings, military vehicles had to be thoroughly waterproofed. The air intake and gasoline vent had to be extended, and pretty much every electronic connector and button had to be covered in what the U.S. military called AWC for Asbestos Waterproofing Compound.

The military’s waterproofing kit contained not just the big AWC patty, but also wire, friction tape and rubber impregnated tubing. When done properly, the U.S. Army Signal Corps claimed, the sealing job could keep a Jeep running for up to six minutes in depths of up to 3.5 feet of water.

That’s a full foot higher than the water fording rating on the new Jeep Wrangler, and means the little Jeep can drive with water filling the entire cabin all the way up to the base of the windshield.

Those little Willys MBs are beasts.

 

The Battle to Bring Offshore Wind Power to America


Post 8048

The Battle to Bring Offshore Wind Power to America

Yesterday 11:00am

The steel towers loom in the distance, like shiny toy soldiers arranged in formation. As our boat approaches, the dizzying size of the machines becomes clear. A few minutes later, I’m standing right next to one, holding the guardrails and craning my head to take it all in. The boat bucks like a rollercoaster as giant waves crash against the bow. Salty spray lashes my eyeballs. I try not to vomit.

Up close, the machines are not toy-like at all. They are aliens, fifty-story monoliths, each crowned with three enormous, outstretched blades that dazzle in the morning light of this crisp October day. This is America’s first offshore wind farm—a pilot project compared with the vast offshore energy plants in European waters—but still, a hard-won victory.

Anchored to the seafloor twenty miles south of Rhode Island, the five turbines comprising Deepwater Wind’s $300 million Block Island Wind Farm wereerected over the summer. The blades were unlocked several weeks back, and in November, they’ll start generating electricity—30 megawatts (MW) at peak capacity, which is enough to power 17,000 homes.

To the dozens of men and women present on today’s boat tour—executives from Deepwater Wind, Rhode Island state politicians, labor leaders and environmentalists—the wind farm is a sign of things to come.

“It’s going to be a stepping stone,” says Walt Trombly, a union representative for the Utility Workers Union of Rhode Island. “The entire country is going to see this.”

If the country likes what it sees, offshore wind could become a cornerstone of America’s bid to wean off fossil fuels. Proponents imagine a future where coastlines from the Carolinas to Maine are lined with thousands of turbines, siphoning energy out of fierce north Atlantic winds and delivering carbon-free power to millions. But not everyone wants that future, and even those who do acknowledge the enormous political, economic, and technological hurdles we need to overcome before it arrives.


It’s a beautiful idea, that the solution to our oil and gas addiction is already at our fingertips. That, with a concerted effort, we could halt climate change by tapping the strong, sustained winds gusting just offshore—an endlessly renewable energy source.

The United States has some of the best offshore wind resources in the world. According to the Department Energy, our “technical offshore potential” is more than 2,000 gigwatts (GW) of power, which translates to double the electricity generated by all oil, coal, and gas-fired power plants last year. Harnessing that full potential would take a mind-boggling number of turbines, but even a fraction of the energy contained in stiff offshore breezes could go a long way toward meeting high power demands along densely populated coastlines.

The northeast, with its fair weather and shallow continental shelves, is considered the ideal place to get started.

“The resource is enough to run all electrical needs for all coastal states from Massachusetts to North Carolina, and much more,” says Willet Kemptom, a professor at the University of Delaware’s School of Marine Science and Policy.

Deepwater wind executives, labor leaders and environmentalists speak to reporters on a recent tour of the Block Island Wind Farm. Photo: Jesse Burke for Gizmodo

Some of the technology we need already exists. Thanks to decades of government incentive programs, offshore wind is taking off in Europe, with turbine costs falling fast as production becomes more industrialized. The offshore wind industry still only accounts for 1.5 percent of the EU’s electricity production, but with three thousand turbines producing 41 terawatt-hours of energy last year, it’s nothing to sniff at.

But in America, offshore wind has made little progress, thanks to high initial costs, lack of political leadership, and fierce pushback from oceanfront communities who don’t want their views marred by gigantic machines. “It’s a typical not-in-my-backyard scenario, and I get it,” says Fiore Grassetti, a steel worker who’s helped install dozens of land-based turbines in New England. “If they’re placed in the wrong location, I agree.”

The first offshore wind project to receive serious vetting in the United States was Cape Wind, a $2.6 billion proposal to build 130 turbines in the Nantucket Sound off Cape Cod. But after receiving state and federal approval back in 2009 and 2010, the project was held hostage for years by an opposition movement spearheaded by a Koch brother and backed by Mitt Romney, among other wealthy and well-connected residents of the Cape. Not only do Cape Wind’s opponents say the project would cause significant “visual pollution,” they insist it will raise the cost of electricity rather than lower it. Last year, after endless construction delays, Cape Wind lost its power purchase agreements with utility companies. It now seems unlikely the project will ever break ground.

Looking up at the steel jacket foundation of an offshore wind turbine. Photo: Jesse Burke for Gizmodo

Perhaps it’s no surprise that the first offshore wind farm to succeed where Cape Wind failed is much smaller, and addresses a much more glaring energy issue. Lacking a direct connection to Rhode Island’s power grid, the 1,000 year-round residents of the sleepy community of Block Island have, for decades, been forced to burn diesel fuel shipped over from the mainland—a dirty and extremely pricey way of keeping the lights on.

Now that Block Island is producing power, it’s been integrated into the system. In June, utility company National Grid—which is buying electricity from Deepwater Wind and selling it to customers throughout the state—installed a submarine cable connection linking the wind farm and the nearby community to the mainland. The clean energy Block Islanders will start buying this month isn’t exactly a bargain: the first year power-price is 24 cents per kilowatt hour, compared with an average of 14 cents per kilowatt hour throughout the state. But it’sabout 40 percent less than the cost of diesel. The island will also be avoiding an estimated 40,000 tons of carbon emissions per year, and as an added bonus, that new submarine cable includes a fiber optic connection. For the first time, residents will have high-speed internet.

Despite the project’s apparent benefits, not everyone on Block Island is thrilled about it. Some residents see the wind farm as a political charade, arguing that they are bearing the burden of above-market energy costs to enrich private investors, and that the long-term savings will be minimal. As with Cape Wind, opponents feel they are trading environmentally-destructive carbon pollution for economically-destructive visual pollution. “No one can argue that the loss of [Block Island’s] viewshed will not harm my business and any other on the Island,” Block Island grocery store owner Mary Jane Balser wrote in a letter to the Block Island Times in 2014.

Matthew Morrissey, Vice President of Massachusetts for Deepwater Wind, says that the controversy over the Block Island Wind Farm is relatively small. After all, Block Island’s town council and resident’s association supported the project, as did recent Rhode Island governors, state senators, environmental groups, labor union leaders, and the Obama administration.

“Based on the Cape Wind experience, you’d think there’d have been much more pushback,” he says. “I think overwhelmingly, the citizens appreciated the cutting of the energy cost, the clean nature of our fuel source, and the fiber optic line that gave them fast internet.”

At this point, only time will tell if he’s right.


As our boat weaves between turbines like a guppy amongst whales, I learn that there’s far more to the structures than meets the eye. Designed by French energy company GE, Block Island’s 6 MW, 589 foot-tall Haliade turbines employ new “direct drive” technology, which replaces the rotating gearbox of older models with a giant, permanent magnet generator. “This reduces mechanical systems inside the machine,” GE project director Eric Crucerey says. “Fewer pieces mean less maintenance.” In fact, if all is running well, nobody will need to be inside the turbines at all.

The generator is located at the top of the turbine, inside a 400-ton, schoolbus-sized steel house called the nacelle. Directly in front of it lies the rotor hub, which supports three 240 foot-long, fiberglass blades that sweep an area larger than three football fields. The nacelle also includes a control room, with computer systems that automatically monitor windspeed and direction and adjust the blades accordingly. “These blades are not dumb, static things,” Morrissey says, sweeping his arm out across the sky. “They’re highly tuned, sensitive instruments.”

The top of this Haliade turbine includes a nacelle, where the generator and rotor are housed, a helipad (yellow structure) and three enormous fiberglass blades. Photo: Jesse Burke for Gizmodo

If the nacelle includes the brain and muscles of the turbine, the tower—an enormous metal tube built of three 200-ton sections of cast steel—is its backbone. The Block Island Wind Farm towers were assembled over the summer with the help of Brave Tern, an aircraft carrier-esque Norwegian vessel that can lift a gigantic crane hundreds of feet out of the water on four enormous stilts. The tower, in turn, rests on a 1,500-ton steel jacket foundation, which is anchored to the seafloor 100 feet down.

The turbines are hardy things, designed to endure everyday wind and waves, but also powerful storms and even hurricanes. They start spinning to generate power at wind speeds of approximately 6.5 mph, and from there, run merrily along until wind speeds approach that of a strong tropical storm. “When wind speeds get up to 55 miles per hour, we will feather the blades so they’re not creating friction with the wind,” Morrissey says. With the blades in a safer configuration, Morrissey reckons they can withstand gusts of over 200 mph. “They’re insured, which says something,” he notes.

Under normal conditions, electricity generated by a turbine is transmitted via cables down the length of the tower to the seafloor, then to a substation located on Block Island. From there, it’s supplied to the island’s residents and fed back into Rhode Island’s grid. As Catharine Bowes of the National Wildlife Federation points out, one turbine is needed to power Block Island, even at peak summertime usage (approximately 4 MW). “All of the surplus goes to the mainland,” she says.

How big that surplus is depends on how fast the wind blows and how well the machines perform, something Deepwater Wind will be monitoring closely. On average, Wilhelm says, offshore wind operations run at 45 percent capacity. Land-based wind farms in the Great Plains run at about 33 percent capacity, while solar farms reach capacities of up to 20 percent.

While each of the turbines is designed to operate autonomously and can be controlled remotely, workers will still have to enter them periodically for maintenance. Normally, they’ll take a boat out, scale ladders attached to the jacket foundation, enter at the base of the tower, and take the long elevator ride to the top. But in a pinch, workers can also airlift in and out via a helipad located next to the nacelle.

In a truly dire situation, Crucery says, a person can sky-dive to the base of the turbine using rappelling gear attached to the helipad. Similar gear can also be used to exit the turbine from the tower, should the elevator break down. “People need training to be inside this machine,” Crucery says.

Indeed, these safety measures serve as a reminder that, while working on a wind turbine is much safer than working on an explosion-prone oil rig or inside a coal mine, clean energy plants are not risk-free. Human accidents involving wind turbines are underreported, but data compiled by theCaithness Windfarm Information Forum indicates that blade failures represent the biggest danger, followed by turbine fires.

Bracing myself against winds that could fling me into the sea if I let my guard down, I try to imagine making the six hundred-foot leap out of a flaming nacelle. If Deepwater Wind’s reticence to discuss emergency evacuations is any indicator, I’m not the only one who finds the scenario a bit frightening.


“Three hundred local tradesmen worked on this wind farm,” says Scott Duhamel, a labor activist from Rhode Island’s Building and Construction Trades Council with a thick Boston accent. For him, there’s nothing better than finishing a big construction project, and the turbines directly ahead of us are—quite literally—as big as they come. “For years, now, they get to drive by and say, ‘I built that, I worked on that, I did that.’ The first one in America.”

A swell of pride at having planted the very first wind turbines in US waters was palpable among everyone I spoke with at on the recent Block Island Wind Farm tour, which was organized by wind energy supporters at the Rhode Island Building and Construction Trades Council, the BlueGreen Alliance, and the National Wildlife Federation. So was a sense that the momentum generated here needs to be maintained. “We saw a job opportunity,” says Rhode Island senator Joshua Miller, who helped pass legislation that required utilities to buy Deepwater Wind’s electricity. “Whoever was first in this part of America was going to set up the platform for [offshore wind] jobs.”

Job creation is often touted as a reason to support wind energy, even if you don’t care about climate change. The reality is that switching to clean power at industrial scales is going to require industrial-scale manufacturing and development, such as we’re starting to see in Europe, where most of the Block Island Wind Farm’s parts were built. The DOE estimates that an offshore wind industry could support 600,000 new jobs on US shores by 2050.

To Jimmy Shillitto, Vice President for Local 1-2 Utility in New York, adaptation to the shifting energy landscape is inevitable. “Times are changing,” he says. “If we don’t get involved, we’ll die off.”

Rhode Island may be first out the gates on offshore wind, but other states are poised to catch up quickly. Over the summer, Massachusetts passed a bill that will require its utilities to purchase 1,600 MW of electricity from offshore wind farms by 2027. The state of New York, meanwhile, recently approved a Clean Energy Standard that compels New York City to draw 50 percent of its power from renewable sources by 2030.

Will the industry catch on elsewhere in the northeast? According to Wilhelm, electricity from offshore wind is still about double the market cost, “which is kind of discouraging,” he admits. States that haven’t been eager to pick up some of that cost may be waiting for a signal from the feds—say, a tax creditsimilar to the soon-expiring production tax credit that’s driven the price of land-based wind power down. Of course, national energy policies depend entirely on who we elect into office this November and in the years to come.

There’s also the issue of actually using the seafloor. The Obama administration has designated 11 wind energy areas in the northeast, but many more are needed for offshore wind energy to make a dent in our carbon pollution. State governments and energy companies need to do environmental vetting, to ensure they aren’t building on top of sensitive habitats, or during key migration periods for birds and whales. These processes take time.

Looking further into the future, new technologies will be needed to expand offshore wind into other environments. “On the west coast, the continental shelf gets really deep really fast,” says Jose Zayas, director of the DOE’s Wind Energy Technologies Office. “In the Gulf of Mexico, you’ve got to deal with hurricane survivability. The Great Lakes tend to freeze, which is problematic from a structural perspective. The ocean is a complicated environment.”

Looking back on America’s first offshore wind farm. Photo: Jesse Burke for Gizmodo

Deepwater Wind, for its part, has already secured rights to another lease area, about 20 miles east of the Block Island Wind Farm, and is in the process of negotiating a power purchase agreement with Long Island for the first phase of the site’s development, the 90 MW South Fork Wind Farm. If the deal is approved, construction could begin as soon as 2019.

As our boat crests around the craggy southeastern shore of Block Island, past cliffs and harbors dotted with picturesque New England homes, the turbines recede from view. The blades, which we could see swaying lazily in the breeze from directly underneath, now appear suspended in place against the brilliant blue horizon. Looking back on the wind farm from far away, I’m once again reminded what a small step this is compared with what’s needed to transform our grid and prevent dangerous climate change.

But small steps are how new ideas take root. Whether these turbines are the first ambassadors of our brave new energy future, or a curious blip in the history books, I can’t yet say. We’ll have to see how the winds blow.

Maddie is a staff writer at Gizmodo

Watch a Japanese Hand Plane Shave Wood Impossibly Thin


Post 8025

Watch a Japanese Hand Plane Shave Wood Impossibly Thin

Thursday 4:05pm

 http://sploid.gizmodo.com/watch-a-japanese-hand-plane-shave-wood-impossibly-thin-1788039470

Japanese hand planes or kannas are remarkable tools that can shave off layers of wood so ridiculously thin that they look like tissue paper. The wood shaving in the GIF above is only 8 microns thick which almost sounds like an impossible measurement because even human hair has a diameter of about 50 microns.

Kannas are used in carpentry to shave down wood and create a smooth finish, because the tools can maintain the wood’s natural pattern. (Sandpaper scrubs that all away.) It looks fun to use because it turns the stuff of trees into translucent curls of nothingness.

There are also hand planing competitions in Japan, which look like they get pretty intense.

World’s First ‘Three Parent Baby’ Born Thanks to a New Fertility Technique


Post 7978

World’s First ‘Three Parent Baby’ Born Thanks to a New Fertility Technique

Yesterday 1:33pm

 http://gizmodo.com/worlds-first-three-parent-baby-born-thanks-to-a-new-fer-1787143135
Image: Zeiss Microscopy

A new reproductive technique in which a baby is produced with the genetic material from three distinct parents has yielded its first human.

 As reported in New Scientist, the baby was born five months ago in Mexico with the help of US researchers. The three-parent reproductive technique, known as mitochondrial donation or pronuclear transfer, is not yet legal in the United States, but it is under serious discussion. The method was approved two years ago in the UK, but that country has yet to produce its first “three-parent” child.

 This therapy stops serious conditions from being passed down from mother to child. In this case, the five-month old boy was born to a Jordanian mother who was at risk of passing down a fatal and debilitating genetic disorder called Leigh Syndrome, which affects the developing nervous system. The mother had previously lost two children to the disorder, so she sought the help of John Zhang, a researcher at the New Hope Fertility Center in New York City. As noted in New Scientist, Zhang performed the procedure in Mexico, where “there are no rules,” adding that “[saving] lives is the ethical thing to do.”

Mitochondria are the powerpacks that fuel every human cell, and just like the nucleus, they contain DNA. Unfortunately, inherited defects in mitochondrial DNA can cause severe or even fatal results. To overcome this problem, scientists extract two eggs—one from the mother and one from a donor. The nucleus of the donor egg is removed, leaving the mitochondria intact, and replaced by the mother’s nucleus. The resulting embryo is free from the inherited defect, resulting in a potentially healthy baby—albeit it with three parents.

 Zhang and his colleagues tested the baby’s mitochondria, and found that less than one percent contains the harmful mutation. It usually takes about 18 percent of mitochondria to be affected before problems set in.

The technique is considered controversial by some because of the unorthodox number of parents. But bear in mind that a scant 0.1 percent of genetic information is being transferred by the donor. This concern is basically a non-issue, and people need to get over it. Also, this is not the first time that a baby has been born with three parents; it simply marks the first time it’s been done using this new technique.

 More important are the questions of safety and efficacy. Running off to Mexico to perform a procedure because it’s still illegal in the United States may push the science forward, but it’s clearly sending the wrong message.

[New Scientist]

George is a contributing editor at Gizmodo and io9.

How Self-Driving Cars May Change The World


Post 7974

“this is an article sent in by Sally Thomas ” :

How Self-Driving Cars May Change The World

Self-driving cars. Some are horrified by the prospect. Others are excited. Whatever you think of them, however, they’re on their way. We’ve got the technology, and governments are working even now on putting legislative infrastructures in place which will allow their use. Quite what form these infrastructures will take remains to be seen – but it looks pretty certain that the first commercial driverless cars will be hitting a road near you pretty soon. One day, you may even own one yourself. Or possibly not, if driverless technology changes vehicle ownership trends (as it may well do…). Plenty of people think that driverless cars will bring sweeping changes to the world in their wake. This might be true, it might not – it all depends on what legislation accompanies their advent, and how the public receive and use them. However, let’s go out on a limb and have a look at some of the changes which could, potentially, take place with driverless cars…

General Motors’ Firebird II was described as having an “electronic brain” that allowed it to move into a lane with a metal conductor and follow it along

https://en.wikipedia.org/wiki/Autonomous_car

The Transportation Industry Could Transform

The industry most obviously and immediately affected by driverless technology will be the transportation industry. If your vehicle drives itself, it does not need a driver, after all. Lots of people are worried that this will put those currently employed to drive out of a job. However, this may not necessarily be the case. After all, while a driverless lorry may be able to get your parcel to your street, it can’t carry it to your door and get your signature. And while a driverless bus may be able to get you from A to B, it can’t provide security, or answer your queries about tickets. While there may well be technological solutions around both of these problems, it also seems likely at the moment that governments will insist on having someone qualified to take manual control of any driverless commercial vehicle on board while the vehicle is in operation – whether or not they are actually driving it themselves. So the outlook for bus drivers and delivery people isn’t as bleak as it may seem!

Ownership May Alter

For private vehicles, it could transpire that people will come to see cars as more of a service to be called up as and when needed rather than as individual possessions. If you can direct your car by remote control, there’s no reason why it shouldn’t be out and about transporting other people from place to place when you don’t need it yourself. This poses some interesting questions for the private car industry. For example, if you can happily co-own a car with a group of other people, and if none of you are actually driving the car themselves, how will the current system of needing to be insured on the car you drive work? Will vehicle companies offer subscription services via which users can call up cars when they need them, rather than owning their own – like a remote control taxi, only cheaper? All very interesting, and something that the automotive industry is currently working upon rather feverishly!

The Volvo S60 Drive Me autonomous test vehicle is considered Level 3 autonomous driving.

https://en.wikipedia.org/wiki/Autonomous_car

Parking Won’t Be A Problem

If you can send your car off to park itself, and call it back when you need it, the problem of parking suddenly ceases to be an issue. Indeed, we could potentially free up an awful lot of land space currently occupied by car parks which must needs be within walking distances of houses, shops, workplaces etc. If self-driving cars could take themselves to a single depot when not actively transporting people, that eliminates at a stroke the necessity for shopping center and office car parks. You could even grub up your drive and turn it into a garden, or convert your garage into a games room!

Tesla Model S Autopilot system is suitable only on limited-access highways not for urban driving. Among other limitations, Autopilot can not detect pedestrians or cyclists.

https://en.wikipedia.org/wiki/Autonomous_car

The Look Of Vehicles Will Change

As you’d expect, proponents of driverless vehicles currently claim that they’ll be a lot safer than what we’ve got at the moment. Whether or not that is the case remains to be seen – but it’s almost certain that the safety specs for driverless cars will be different to those of manually driven cars. For a start, they’re likely to have electric engines, which are considerably smaller than petroleum-driven engines. While they’ll need space for the computer tech which will drive the car, these can also be rendered pretty small. So spacious hoods to house hefty engines simply won’t be needed. Currently, there’s a good argument for keeping a large ‘crumple zone’ regardless of what’s under the hood, as it helps to protect passengers during head-on collisions. However, the likelihood is that driverless car passengers will be in the back rather than the front of the car, meaning that the vehicle as a whole can be a hell of a lot smaller without sacrificing any ‘crumple zone’ advantages.