8-Legged Extremophile Freaks Will Outlive Humanity (& Maybe the Sun)


Post 8440

8-Legged Extremophile Freaks Will Outlive Humanity (& Maybe the Sun)

An extreme close-up of a tiny tardigrade, also known as a “water bear.” A new study suggests the tiny eight-legged creatures could be the last survivors of Earth, outliving humanity.

Credit: University of Oxford

The eight-legged micro-animal called a tardigrade could survive nearly all the way until the death of the sun, a new study suggests — long after humans are history.

The study, from Harvard and Oxford universities, detailed the threats to life on Earth over billions of years, finding that Earth-pummeling asteroids, nearby supernova blasts and gamma-ray bursts would be unlikely to completely sterilize Earth (taking out the little tardigrades in the process).

Tardigrades, which are usually less than a millimeter long (0.04 inches), are nearly indestructible, some of the most resilient forms of life on Earth. They can survive for up to 30 years without eating, and can be frozen, boiled, squished under intense pressure, and exposed to the vacuum and radiation of space without ill effect. The animal, which lives in water (and is also known as a “water bear,” can survive for up to 60 years, according to a statement from the University of Oxford. [Earth’s ‘Alien’ Creatures May Reveal Clues About Extraterrestrial Life]

“‘A lot of previous work has focused on ‘doomsday’ scenarios on Earth — astrophysical events like supernovas that could wipe out the human race,” David Sloan, a co-author on the new work and researcher at Oxford, said in the statement. “Our study instead considered the hardiest species — the tardigrade. As we are now entering a stage of astronomy where we have seen exoplanets and are hoping to soon perform spectroscopy [on those planets], looking for signatures of life, we should try to see just how fragile this hardiest life is.”

“To our surprise, we found that although nearby supernovas or large asteroid impacts would be catastrophic for people, tardigrades could be unaffected,” he added. “Therefore, it seems that life, once it gets going, is hard to wipe out entirely. Huge numbers of species, or even entire genera may become extinct, but life as a whole will go on.”

The researchers detailed what would happen with each of those threats in a new paper, released today (July 14) in the journal Scientific Reports.

A new study examines the ways small organisms called tardigrades could endure even if Earth were faced with gamma-ray bursts, supernova blasts or deadly asteroids. Only the death of the sun would finally do them in (most likely).

A new study examines the ways small organisms called tardigrades could endure even if Earth were faced with gamma-ray bursts, supernova blasts or deadly asteroids. Only the death of the sun would finally do them in (most likely).

Credit: ESA/Dr. Ralph O. Schill

Gamma-ray bursts, the most powerful explosions in the universe, are jets of radiation likely released when a star collapses into a black hole after emitting an ultra-powerful supernova blast. If one of those blasts occurred close enough to Earth, heading straight toward the planet, it could take out Earth’s ozone layer, leaving Earthlings exposed to deadly radiation levels, the researchers wrote in the paper. But life that lived below ground or in large bodies of water would be shielded from harm and could survive, including the tardigrade.

To boil away Earth’s oceans, the researchers wrote, a gamma-ray burst would have to occur less than 40 light-years away, if it were aimed right toward Earth.

An ordinary, less-powerful supernova would pose the same radiation danger, but it would have to be just 0.14 light-years from Earth to vaporize the oceans and sterilize the planet. One light-year, the distance that light travels in a year, is about 6 trillion miles (10 trillion kilometers).

A killer asteroid could cloud the sky with debris, killing life that relies on sunlight, or even lead to the loss of Earth’s atmosphere. But life could live on deep in the ocean, or gather sustenance from volcanic vents, the researchers said. Less than 20 known asteroids and dwarf planets, including Vesta and Pluto, would provide enough of a kick to boil off Earth’s oceans with their impacts — and none are headed toward Earth anytime soon.

Calculating the probability of each of those events, and factoring in the heightened temperatures and pressures in which tardigrades can survive, the researchers found an incredibly tiny probability that an ocean-boiling, life-ending event would occur within 10 billion years.

The sun will someday evolve into a red giant star and expand to be even larger in diameter than Earth’s orbit. But before that point, the star would get hot and close enough to sterilize Earth for good, boiling away the world’s oceans before consuming the planet or knocking it out of orbit — ending the tardigrades’ reign at last. [Death of the Sun: How It Will Destroy Earth (Infographic)]

(And even then, the researchers said in the paper, there’s a possibility that a planet’s orbit will be disturbed enough by its star’s expansion that it’ll be knocked away early, wandering the galaxy as a rogue world. Scientists have discussed the possibility that creatures like tardigrades could survive on a free-floating planet for a time.)

Studies suggest that Mars once had better conditions for life, including a thicker atmosphere and lakes and streams. If life that developed on planets like Mars is anything like tardigrades, it would stick around despite the planet’s current inhospitable conditions, the researchers said.

“It is difficult to eliminate all forms of life from a habitable planet,” Avi Loeb, a study co-author and Harvard’s chair of astronomy, said in the statement. “The history of Mars indicates that it once had an atmosphere that could have supported life, albeit under extreme conditions. Organisms with similar tolerances to radiation and temperature as tardigrades could survive long term below the surface in these conditions.”

Similarly, the subsurface oceans on Saturn’s moon Enceladus and Jupiter’s moon Europa may feature volcanic vents that provide heat, similar to the locations where tardigrades can thrive deep under Earth’s sea, he said.

“Tardigrades are as close to indestructible as it gets on Earth, but it is possible that there are other resilient species examples elsewhere in the universe,” added Rafael Alves Batista, a co-author and researcher at Oxford. “If tardigrades are Earth’s most resilient species, who knows what else is out there?”

Email Sarah Lewin at slewin@space.com or follow her @SarahExplains. Follow us @SpacedotcomFacebook and Google+. Original article on Space.com

Advertisements

Chinese Scientists Just Set the Record for the Farthest Quantum Teleportation


Post 8439

Chinese Scientists Just Set the Record for the Farthest Quantum Teleportation

Chinese Scientists Just Set the Record for the Farthest Quantum Teleportation
Credit: sakkmesterke/Shutterstock

Chinese scientists have just shattered a record in teleportation. No, they haven’t beamed anyone up to a spaceship. Rather, they sent a packet of information from Tibet to a satellite in orbit, up to 870 miles (1,400 kilometers) above the Earth’s surface.

More specifically, the scientists beamed the quantum state of a photon (information about how it is polarized) into orbit.

Not only did the team set a record for quantum teleportation distance, they also showed that one can build a practical system for long-distance quantum communications. Such a communication system would be impossible to eavesdrop on without alerting the users, which would make online communications much more secure.

Experiments like this have been done before, but Howard Wiseman, director of the Center for Quantum Dynamics at Griffith University in Brisbane, Australia, told Live Science in an email that this one expands the possibilities for the technology. [10 Futuristic Technologies ‘Star Trek’ Fans Would Love to See]

“This is much more difficult, because it is to a rapidly moving target, and you have your quantum detectors way out in space where they have to work without anyone fiddling with them,” he said. “It is a big step towards global-scale quantum communication.”

The experiment takes advantage of one of several phenomena that describes quantum mechanics: entanglement, or “spooky action at a distance,” as Albert Einstein called it. When two particles are entangled, they remain connected so that an action performed on one affects the other as well, no matter how far apart the two are. In the same vein, when one measures the state of one particle in the entangled duo, you’d automatically know the state of the second. Physicists call the states “correlated,” because if one particle — a photon, for example — is in an “up” state, its entangled partner will be in a “down” state — a kind of mirror image. (Strictly speaking, there are four possible combinations for the two particles to be in).

The weird part is that once the state of the first particle is measured, the second one somehow “knows” what state it should be in. The information seems to travel instantaneously, without a speed-of-light limit. [8 Ways You Can See Einstein’s Theory of Relativity in Real Life]

In June, the same researchers reported another feat in quantum teleportation: They sent entangled photons from the Micius satellite to two ground stations over distances between 994 miles and 1,490 miles (1,600 and 2,400 km), depending on the location of the satellite in its orbit. While this experiment showed that entanglement can happen over long distances, the new experiment uses that entanglement to transmit a photon’s quantum state to a distant location.

In their latest experiment, the Chinese team, led by Ji-Gang Ren at the University of Science and Technology in Shanghai, fired a laser from a ground station in Tibet to a satellite in orbit. That laser beam carried a photon entangled with another photon on the ground. They then entangled the photon on the ground with a third photon, and measured their quantum states. But the scientists didn’t actually reveal the states themselves. They just asked whether their states (in this case, their vertical or horizontal polarizations) were the same or different. There are four possible combinations: vertical-vertical, vertical-horizontal, horizontal-vertical and horizontal-horizontal. Since the states of the particles on the ground were correlated with the one on the satellite, an observer looking at the satellite’s photon, meanwhile, would know that that photon has to be in one of four possible states that correlate with the two photons on the ground.

If there were a person riding in the satellite, once they were told that the states of the ground-based photons were the same or different, they would know enough to be able reconstruct the state of the ground-based photons and to duplicate it in their single photon on board. The photons on the ground would have had their quantum state teleported to orbit.

While it sounds like information is traveling faster than light, there’s no way to use this property as an instantaneous messaging system. That’s because even though the states of entangled particles are correlated, you can’t know what they are before you measure them, nor can you control the state.

But what entangled particles can do is act as perfect authenticators for messages. The reason is that the act of observing a particle changes its behavior. If an eavesdropper were trying to intercept the transmission between the satellite and the ground in this recent experiment, the quantum states of the photons (as measured by the scientists) would not be correctly correlated.

The Chinese team managed to make entanglement work over distances of 310 miles (500 km) to 870 miles (1,400 km), the maximum distance to the satellite. This is farther than anyone has ever managed to send entangled states. Entangled photons can’t interact with anything else on the way to their destination, because once they do, their states have been “observed” – revealed by the interaction. Hence, the teleportation doesn’t work if the photons are observed before they get to their destination. When scientists conduct experiments like this one, they don’t just send single photons, one at a time; to get the measurements they want, they need to send lots of them. Even in the vacuum of space, out of millions of photons sent, the satellite was only able to reliably receive 911 of them, according to the study.

What Einstein called “spooky action at a distance” links pairs of particles even when separated.

Credit: Karl Tate, Livescience.com Infographics Artist

In quantum physics, entangled particles remain connected so that actions performed on one affect the other, even when separated by great distances. The phenomenon so riled Albert Einstein he called it “spooky action at a distance.”

The rules of quantum physics state that an unobserved photon exists in all possible states simultaneously but, when observed or measured, exhibits only one state.

Spin is depicted here as an axis of rotation, but actual particles do not rotate.

Entanglement occurs when a pair of particles, such as photons, interact physically. A laser beam fired through a certain type of crystal can cause individual photons to be split into pairs of entangled photons.

The photons can be separated by a large distance, hundreds of miles or even more.

When observed, Photon A takes on an up-spin state. Entangled Photon B, though now far away, takes up a state relative to that of Photon A (in this case, a down-spin state). The transfer of state between Photon A and Photon B takes place at a speed of at least 10,000 times the speed of light, possibly even instantaneously, regardless of distance.

A proposed experiment would send one photon of the entangled pair to the orbiting International Space Station, a distance of around 310 miles (500 kilometers). This would be the largest distance that has been experimentally tested.

If these same photons were sent over fiber-optic cables, rather than through space, the connection between the photons would be destroyed by interference from factors such as heat and vibration, or even random interactions with the cable. As such, it could take 380 billion years to get a measurement from an entangled photon. A satellite, on the other hand, is outside of the atmosphere, and there’s much less chance of the entangled photon getting spoiled.

“With fiber you lose many of the photons,” said Bill Munro, a senior research scientist at NTT’s basic research laboratory, in an interview with Live Science. Beaming photons to orbit means that you could build an actual communications system. “You could beam from China to Washington or New York.” The problem of reducing the interference with the signals and getting more photons through, Munro said, is a technical and engineering problem that can be solved.

Both Munro and Wiseman noted that often people think of teleportation as moving an actual object (or a photon) form one place to another. “People have this ‘Star Trek‘ approach,” Munro said. “They think of atoms being teleported. What we’re moving is information from one [quantum] bit to another [quantum] bit. There’s no matter — only information. That’s hard to get your head around.”

The study appeared in the ArXiv on July 4.

Originally published on Live Science.

Bug vs. Bird: Praying Mantises Feast on Feathered Prey


Post 8438

Bug vs. Bird: Praying Mantises Feast on Feathered Prey

A praying mantis (Tenodera sinensis) eating a ruby-throated hummingbird (Archilochus colubris) in Illinois.

Credit: Courtesy of whatsthatbug.com/Randy Anderson

Many bird species are known to dine on insects, but for a dozen species of praying mantises, birds aren’t the predators — they’re the prey.

Carnivorous mantises are deadly hunters that use their powerful front legs to capture insects and spiders; some larger species have even been observed nabbing small vertebrates, such as amphibians, lizards, snakes and mice.

And now, scientists have found that mantises distributed around the world are also regularly catching and eating small birds, according to a new study. The researchers discovered 147 examples of mantises hunting birds in 13 countries, on every continent except Antarctica. [Lunch on the Wing: Mantises Snack on Birds (Photos)]

To gather their data, the researchers scoured extensive records of mantises preying on birds, delving into published studies, academic dissertations, books and posts on social media. The earliest description they found — from Argentina — dated to 1864, but 67 percent of the observations took place between 2000 and 2015, mostly in warmer climates, the researchers wrote in the study.

More than 70 percent of all the examples were from the United States, and the birds most often on the menu were ruby-throated hummingbirds (Archilochus colubris), which the mantises frequently captured near flowers and hummingbird feeders, the study authors reported.

As ambush predators, mantises lie in wait until their prey is close. They hold fast to a perch with four hind limbs as they strike with their front legs, and they begin to feed on the living victim once it is in their grasp. In some cases, the birds’ brains appeared to be a favorite part of the meal, the scientists wrote.

One account dating to 1922 in Australia described an unidentified mantis near four dead birds, “each with a hole in its head through which its brains had been extracted,” the study authors wrote.

In total, about 24 species of birds were identified as mantis prey. This group included hummingbirds and small passerines — perching birds such as sparrows, finches and canaries. And once a bird was caught, its fate was as good as sealed, with only 2 percent able to free themselves from the insect’s clutches without human intervention, the scientists found.

Most of the birds caught by mantises were relative lightweights, weighing in at less than 0.2 ounces (6 grams). By comparison, some of the mantis species weighed as much or slightly more than their prey. But mantises are also known for their ability to snag meals larger and heavier than they are. A prior study reported a mantis in Australia catching a tree frog that weighed 0.9 ounces (25 g), and another study described a mantis “attempting to chew on the wing” of a bird that weighed 0.5 to 0.7 ounces (14 to 19 g), according to the study.

A female <i>Tenodera sinensis</i> eating an immature male ruby-throated hummingbird (<i>Archilochus colubris</i>) in Clermont, New Jersey, with a courting male on her back.

A female Tenodera sinensis eating an immature male ruby-throated hummingbird (Archilochus colubris) in Clermont, New Jersey, with a courting male on her back.

Credit: Todd Klein

The bird-hunting mantises that the researchers encountered were generally female, with bodies measuring at least 2.4 inches (6 centimeters) in length. In two instances, the hungry female mantis was found multitasking — feeding on a bird while simultaneously mating with a male, study lead author Martin Nyffeler, a senior lecturer in zoology at the University of Basel in Switzerland, told Live Science in an email.

Reproductive needs could possibly explain why only female mantises were discovered eating birds — they might require more energy, as female spiders do, prior to producing their eggs, Nyffeler said.

The scientists also learned that in North America, about 55 percent of the birds counted in the study fell prey to invasive species of mantises, which were introduced about 100 years ago, and which are both larger and heavier than native mantises.

Invasive or not, mantises probably aren’t catching nearly as many birds as domestic cats, which kill hundreds of millions of small birds each year in the U.S. alone. But the study’s findings suggest that mantises do present an unexpected and significant risk to bird populations around the world —particularly hummingbirds, the study authors reported.

“On a global scale, bird mortality caused by praying mantises might be rather insignificant compared to the losses caused by raptor birds and cats,” Nyffeler said in a statement.

“Notwithstanding that, if we limit our consideration to the suburban/urban areas in USA, we arrive at the conclusion that praying mantises pose a considerable threat to hummingbirds” he added.

Original article on Live Science.

Fire Ants Build Sinking ‘Eiffel Towers’ from Their Own Bodies


Post 8437

Fire Ants Build Sinking ‘Eiffel Towers’ from Their Own Bodies

Fire ants can use their bodies to create “towering” towers.

Credit: Georgia Tech

Fire ants can build miniature look-alikes of the Eiffel Tower from their own bodies, and the insects perpetually rebuild the structures to save them from collapsing, a new study finds.

The insects crawl up and down these structures in a phenomenon that resembles a slow-motion water fountain in reverse, the researchers said.

The new study’s finding could help lead to swarms of robots that can use their own bodies to form complex 3D structures, the scientists added. [Mind Control: Gallery of Zombie Ants]

Fire ants (Solenopsis invicta) evolved in the Pantanal wetlands of Brazil. In 2011, Craig Tovey, a biologist at the Georgia Institute of Technology in Atlanta, and his colleagues discovered the way in which colonies of theseinsects can shape themselves into raftsthat can stay afloat for months.

Fire ants can use sticky pads at the ends of their feet to link to each other and form a pancake-shaped raft. The 2011 study found that each ant’s exoskeleton can trap air bubbles and become slightly water-repellent. Weaving a colony together leads to a more powerful waterproofing effect that keeps the raft dry while afloat in the water. [Video: Watch Fire Ants Build Rafts]

If the ant rafts find optimal spots to settle down, they can form bell-shaped towers that act as temporary shelters in the aftermaths of floods. These structures may each consist of hundreds of thousands of ants and reach more than 30 ants high; until now, it was a mystery how ants could build such tall structures from their own bodies without getting crushed, the researchers said in the new study.

Tovey and his colleagues accidentally found the secret to the tall structures while they were experimenting with fire ant colonies gathered from roadsides near Atlanta. The researchers made the discovery when “we accidentally left the video camera running for an extra hour after the ants had finished building their tower,” Tovey told Live Science.

Study co-author Nathan Mlot, also a biologist at the Georgia Institute of Technology, “was too good a scientist to discard data,” Tovey said. “But he didn’t want to waste an hour watching nothing happen. So he played the video at several times regular speed.”

To induce the ants to build towers, the researchers placed them in clear boxes that had plastic rods sticking up from their floors. These rods served as supports on which the ants could build structures made of themselves. In subsequent experiments, the towers the ants built ranged from 0.28 to 1.18 inches (7 to 30 millimeters) high and were built within 17 to 33 minutes. The researchers noted that such towers likely took on a bell shape because in that form, each component bears an equal load.

At high speed, the researchers could see that the towers are constantly sinking, as ants within the depths of the structures tunnel away from the piles of insects around them. However, the structures are constantly rebuilt, as ants scurry up the sides of the towers.

“I was most surprised that the ant tower perpetually sinks and gets rebuilt,” Tovey said. “I thought the ants stopped building once the tower was complete. The shape stays the same — who would guess that the ants circulate through an unchanging structure?”

To confirm their findings, the researchers mixed a mildly radioactive iodine-based dye into the drinking water of some of the insects and then put the colony in an X-ray machine to monitor the motions of the ants. “In real time, the surface ants block the view,” Tovey said. “Moreover, the sinking is too slow to detect.”

By placing transparent sheets of plastic on top of ants, the scientists found that each insect, which on average weighs about 1 milligram, can support up to about 750 times its weight and live to tell the tale. However, the experiments also suggested that in towers, each ant seems to feel most comfortable supporting up to three ants on its back — any more, and they simply give up and walk away, Tovey said.

The researchers noted these structures were built without a leader or coordinated effort. Instead, each ant just wandered aimlessly, following a certain set of rules that could help it construct towers. Computational models the researchers developed could accurately predict tower shapes and growth rates, the study said.

“To build their tall, solid, Eiffel Tower-shaped structure, the ants seem to be following the same simple behavioral rules that they follow to build a pancake-shaped floating raft on water,” Tovey said. “It is remarkable that the two large-scale shapes formed by the group of ants are dramatically different and achieve different functions, yet emerge from the same small-scale individual behaviors.”

The researchers now want to analyze “the bridges the fire ants make out of their bodies to traverse gaps in terrain,” Tovey said. “They are amazing. The ones in front hold each other, dangle downwards and outwards to the other side, and grip firmly at each end. The rest of the ants walk across the bridge. Then, the ants who compose the bridge deconstruct it starting from the first side, so at the end, all of the ants have reached the other side.”

Such research could help inspire the creation of swarms of robots that could build complex structures from their bodies, Tovey said.

“Robotics researchers have had some success getting a fleet of robots to form a two-dimensional pattern like a rectangle, but they have not figured out how to get robots to form a stable three-dimensional structure,” Tovey said. “This research may show how to do that.

“For example, suppose we send several hundred little robots through a small opening into a collapsed building to search for survivors, or to explore unknown terrain on Mars,” Tovey said. “Sometimes, the robots will have to work together to cross crevices or climb over steep obstacles. At other times, they should spread out. This research may help us understand how to design their individual controllers so they can cooperatively accomplish different tasks in different situations.”

Still, it may prove difficult creating robots that can do everything ants can do, he said. “Repeatedly drop an ant from 6 feet [1.83 meters], and it won’t get injured. Drop a robot from 6 feet a hundred times and good luck,” Tovey said.

The scientists detailed their findings online July 12 in the journal Royal Society Open Science.

Original article on Live Science.

10 Amazing Things Scientists Just Did with CRISPR


Post 8424

10 Amazing Things Scientists Just Did with CRISPR

CRISPR technology
Credit: vchal/Shutterstock

CRISPR technology

It’s like someone has pressed fast-forward on the gene-editing field: A simple tool that scientists can wield to snip and edit DNA is speeding the pace of advancements that could lead to treating and preventing diseases.

Findings are now coming quickly, as researchers can publish the results of their work that’s made use of the tool, called CRISPR-Cas9.

The tool, often called CRISPR for short, was first shown to be able to snip DNA in 2011. It consists of a protein and a cousin of DNA, called RNA. Scientists can use it to cut DNA strands at very precise locations, enabling them to remove mutated parts of genes from a strand of genetic material.

In the past year alone, dozens of scientific papers from researchers around the world have detailed the results of studies — some promising, some critical — that used CRISPR to snip out and replace unwanted DNA to develop treatments for cancer, HIV, blindness, chronic pain, muscular dystrophy and Huntington’s disease, to name a few.

“The pace of basic research discoveries has exploded, thanks to CRISPR,” said biochemist and CRISPR expert Sam Sternberg, the group leader of technology development at at Berkeley, California-based Caribou Biosciences Inc., which is developing CRISPR-based solutions for medicine, agriculture, and biological research.

Although it will be a few more years before any CRISPR-based treatments could be tested in people, “hardly a day goes by without numerous new publications outlining new findings about human health and human genetics that took advantage” of this new tool, Sternberg told Live Science.

Of course, humans are not the only species with a genome. CRISPR has applications in animals and plants, too, from disabling parasites, like those that cause malaria and Lyme disease, to improving the crop yields of potatoes, citrus and tomatoes.

“[CRISPR] is incredibly powerful. It has already brought a revolution to the day-to-day life in most laboratories,” said molecular biologist Jason Sheltzer, principal investigator at the Sheltzer Lab at Cold Spring Harbor Laboratory in New York. Sheltzer and his team are using CRISPR to understand the biology of chromosomes and how errors associated with them may contribute to cancer.

“I am very hopeful that over the next decade gene editing will transition from being a primarily research tool to something that enables new treatments in the clinic,” said Neville Sanjana, of the New York Genome Center and an assistant professor of biology, neuroscience and physiology at New York University.

Here, we take a look at the recent advances in the fights against 10 diseases that demonstrate CRISPR’s capabilities, and hint at things to come.

Cancer

Credit: royaltystockphoto.com / Shutterstock.com

Cancer

A cure for cancer has alluded humankind since the Greek physician Hippocrates, who lived between 460 and 370 B.C., coined the word for this disease: karkinos. But because cancer, like many diseases, results from a mutation in a person’s genome, researchers say it’s possible that a CRISPR-based treatment could one day slow the speed at which a tumor spreads, or perhaps reverse the disease completely.

Some early work in this area is happening already in China, where regulations governing the use of gene editing in humans are more relaxed than they are in the United States.

In October 2016, a lung cancer patient in China became the first of 10 people in the world to receive an injection of cells that had been modified using CRISPR, the journal Nature reported. The researchers, led by oncologist Dr. Lu You at Sichuan University in Chengdu, modified the immune cells taken from the patient’s own blood and disabled a gene that produces a protein that cancer cells normally hijack in order to divide and multiply. The hope is that without the protein, the cancer cells won’t multiply and the immune system will win out.

Research teams in the United States are also eyeing ways to use CRISPR to fight cancer. Dr. Carl June, director of translational research at the Abramson Cancer Center at the University of Pennsylvania, and his colleagues received approval in June 2016 from the National Institutes of Health to conduct a clinical trial on 18 cancer patients in late stages of melanoma (a skin cancer), sarcoma (a cancer of soft tissue) and multiple myeloma (a cancer of the bone marrow), according to a statement from the university. For this clinical trial, researchers will use CRISPR to alter three genes in patients’ own immune system cells, in hopes of getting those cells to destroy the cancer cells in their bodies.

HIV

Credit: Sebastian Kaulitzki | Shutterstock.com

HIV

Eradicating HIV, the virus that causes AIDS, has been an uphill battle. Not only does the virus infect the very immune cells in the body that attack viruses, but it’s also a notorious mutator. After HIV hijacks a cell in the body and begins to replicate, it generates many genetic variations of itself, which helps it evade drug therapies. This drug resistance is a huge problem in treating people who are infected with HIV, according to the World Health Organization.

CRISPR has HIV lined up in its sight, though. In May 2017, researchers at Temple University and the University of Pittsburgh used CRISPR to snip the virus from the cell it was infecting, shutting down the virus’s ability to replicate. This use of the technique, which was tested in three different animal models, was the first time researchers had demonstrated a way to eliminate HIV from infected cells, according to the researchers, led by Chen Liang, a virologist at McGill University in Montreal. They reported the results of their study in the journal Molecular Therapy.

Huntington's disease

Credit: Ralwel/Shutterstock

Huntington’s disease

About 30,000 people in the United States have an inherited condition called Huntington’s disease, a fatal genetic disorder that causes nerves in the brain to deteriorate over time, according to the Huntington’s Disease Society of America. Symptoms include personality changes, mood swings, unsteady gait and slurred speech.

The condition results from a faulty gene that becomes larger than normal and produces a larger-than-normal form of a protein called huntingtin, which then breaks into smaller, toxic fragments that accumulate in neurons, disrupting their function, according to the National Institutes of Health.

But in June 2017, scientists reported in The Journal of Clinical Investigation that they had reversed the disease in lab mice that had been engineered to have a human mutant huntingtin gene in place of a mouse huntingtin gene. Su Yang, a Postdoctoral Fellow in the department of human genetics at Emory University in Atlanta, and Renbao Chang, at the Institute of Genetics and Developmental Biology at the Chinese Academy of Sciences, used CRISPR to snip out part of the mutant huntingtin gene that produces the toxic bits.

After they did that, the number of toxic fragments decreased in the mice’s brains, and the neurons began to heal. The affected mice regained some of their motor control, balance and grip strength. Although their performance on certain tasks was not as good as that of healthy mice, the results showed the potential of CRISPR to help fight this condition.

In a statement, the scientists stressed that more rigorous studies need to be conducted before such a therapy could be used in humans.

Duchenne muscular dystrophy

Credit: ChiccoDodiFC/Shutterstock.com

Duchenne muscular dystrophy

Duchenne muscular dystrophy is a debilitating condition that develops because of a mutation in a single gene, called the dystrophin gene, which is one of the longest genes in the body. A team of researchers at the University of Texas Southwestern Medical Center led by molecular biology professor Eric Olson is working with CRISPR to find ways to fight Duchenne muscular dystrophy.

Because of the mutation in the dystrophin gene, the body doesn’t make a functional form of the protein dystrophin, which is essential for muscle fiber health. Over time, the lack of this protein causes progressive muscle degeneration and weakness.

In April 2017, Olson and his team reported in the journal Science Advances that they had used a variation of the CRISPR tool, called CRISPR-Cpf1, to correct the mutation that causes Duchenne muscular dystrophy. They fixed the gene in human cells growing in lab dishes and in mice carrying the defective gene.

CRISPR-Cpf1 is another instrument in the gene-editing toolbox. It differs from the more commonly used CRISPR-Cas9 in that it’s smaller, thus making it easier to deliver to muscle cells, according to a statement from UT Southwestern Medical Center. It also recognizes a different sequence of DNA than Cas9, which came in handy for editing the very long dystrophin gene.

Preventing blindness

Credit: Hannah Boettcher / Stock.XCHNG

Preventing blindness

One of the most common causes of childhood blindness is a condition called Leber congenital amaurosis, which affects about 2 to 3 per 100,000 newborns, according to the National Institutes of Health. The condition is inherited and is caused by mutations in at least 14 genes that are responsible for normal vision.

The Cambridge, Massachusetts-based biotech company Editas is working on a CRISPR-based therapy to reverse a type of the disease called Leber congenital amaurosis type 10. The company is aiming to file the necessary papers with the Food and Drug Administration by the end of 2017 to start the first human trials on treatments for this condition, the biotech news website Xconomy reported.

Editas was co-founded by Feng Zhang, a bioengineering professor at MIT who demonstrated that CRISPR-Cas9 could be used on human cells. Jennifer Doudna, of the Unversity of California, Berkeley, and Emmanuelle Charpentier, then of the University of Vienna, also demonstrated that CRISPR-Cas9 could snip DNA, and they filed a patent on the technology in 2012. The Broad Institute, which is part of MIT, submitted its patent in April 2014 and fast-tracked it, ultimately getting the patent. The Broad Institute’s patent was upheld in February, 2017, after the University of California, Berkeley filed a lawsuit claiming Doudna had been first, Nature reported.

Chronic pain

Credit: Stasique/Shutterstock.com

Chronic pain

Chronic pain is not an inherited genetic disease, but scientists are investigating ways to use CRISPR to curb back and joint pain by altering genes to reduce inflammation. Under normal conditions, inflammation is the body’s way of telling the immune system to repair tissue. But chronic inflammation can do the opposite and damage tissue, eventually causing debilitating pain.

In March 2017, a team of researchers led by bioengineering assistant professor Robby Bowles of the University of Utah reported that they had used CRISPR to prevent certain cells from producing molecules that are designed to break down tissue and lead to the inflammation that causes pain, according to a statement from the university.

The technique could be used to delay the degeneration of tissue after back surgery, for example. This could speed healing and reduce the need for additional surgeries to correct tissue damage.

Lyme disease

Credit: CDC.

Lyme disease

Kevin Esvelt, an evolutionary biologist at MIT, wants to wipe out Lyme disease, which is caused by a tick-borne bacterium that can spread from deer-tick bites to people. If left untreated, the infection can cause joint inflammation, nerve pain, heart palpitations, facial palsy and other problems, according to the CDC.

Although the bacteria that cause Lyme disease are transmitted to people by the deer tick, the ticks themselves don’t have the bacteria when they hatch from eggs. Rather, young ticks pick up the bacteria when they feed, often on the white-footed mouse. Esvelt wants to reduce the disease by using CRISPR-Cas9 to genetically modify white-footed mice in a way that would make them and their offspring become immune to the bacteria and unable to pass it along to ticks, Wired reported.

In June 2016, Esvelt presented his solution to the residents of the islands of Nantucket and Martha’s Vineyard, in Massachusetts, which have a major Lyme disease problem, the Cape Cod Times reported. Such mice will not be released on the island, however, until further testing is done, and that could take years.

Malaria

Credit: James Gathany. Provided by CDC | Paul I. Howell, MPH; Prof. Frank Hadley Collins

Malaria

Malaria kills hundreds of thousands of people per year. In 2015, the most recent year for which the World Health Organization has statistics, there were roughly 212 million malaria cases and about 429,000 malaria deaths.

To attack the problem at the source, research teams at Imperial College London are aiming to reduce the populations of malaria-transmitting mosquitoes. According to a statement from the college, a group of scientists led by professors Austin Burt and Andrea Crisanti will investigate two main courses of action: genetically modifying the male mosquitoes so that they produce more male offspring, and genetically modifying the female insects in a way that lowers their fertility.

In December 2015, the team reported in the journal Nature that they had identified three genes to reduce female mosquito fertility. They also announced that they had found that CRISPR could work to target at least one of them.

Crops

Credit: Linda & Dr. Dick Buscher

Crops

Just as CRISPR can be used to modify the genomes of humans and animals, it can be used to modify the genomes of plants. Scientists are investigating ways to harness the tool’s gene-editing ability to reduce disease in some crops and make others more robust.

Sophien Kamoun, a professor at the Sainsbury Laboratory in Norwich, England, for example, is looking at ways to remove the genes that make potatoes and wheat vulnerable to disease, PhysOrg reported. Zachary Lippman, a geneticist at Cold Spring Harbor Laboratory in New York, is using CRISPR to develop tomato plants with branches that are optimized to handle the weight of ripe tomatoes and not break, Nature reported. And in California, several labs are trying to harness CRISPR to tackle a plant disease called citrus greening, which is caused by bacteria that spread by insects that fly among plants in a citrus grove, Nature News reported.

Editing a viable human embryo

Credit: Dreamstime

Editing a viable human embryo

The speed with which CRISPR-based studies can go from hypothesis to result is astounding. Experiments that used to take months now take weeks, Sheltzer told Live Science. That speed has raised some concerns from policymakers and stakeholders, especially when it comes to using such a technology on humans.

In February 2017, scientists at The National Academies of Sciences, Engineering and Medicine issued an assessment of human gene editing, saying that it was acceptable but only under certain conditions. The group also said that altering the cells in embryos, eggs and sperm was ethically permissible provided that it was done to correct a disease or a disability, not to enhance a person’s physical appearance or abilities, Science News reported.

Although no scientists in the United States have used CRISPR to modify a viable human embryo yet, a team led by Jianqiao Liu of Guangzhou Medical University in China reported such an advance March 1, 2017, in the journal Molecular Genetics and Genomics. The scientists used CRISPR-Cas9 to introduce and then edit out disease-causing mutations from human embryos. The study was done to show that the genetic editing could be done at the embryonic stage. The embryos were not implanted in a human.

Follow Live Science @livescience, Facebook & Google+.

The Best ISO-Certified Gear to See the 2017 Solar Eclipse


Post 8421

The Best ISO-Certified Gear to See the 2017 Solar Eclipse

Gear Up for the Solar Eclipse!

Gear Up for the Solar Eclipse!

When the Great American Total Solar Eclipse sweeps across the U.S. on Aug. 21, you’ll need some safety-rated gear to watch it safely. Here are Space.com’s picks for the best solar-eclipse-viewing gear, including glasses, binoculars, telescopes and more!

Up First: Essential eclipse glasses

"Sun Catcher" Sunglasses (2-Pack)

“Sun Catcher” Sunglasses (2-Pack)

Enjoy the solar eclipse with a friend with these basic, affordable and ISO safety-rated solar eclipse glasses from Explore Scientific. ($2.49 from Explore Scientific)

Why we love it: These “Sun Catcher” sunglasses are just slightly more stylish than the standard paper eclipse viewers for the same low price.

Buy “Sun Catcher” Sunglasses (2-Pack) from Explore Scientific USA.

Next: Catch the sun up close

"Sun Catcher" 50-mm Telescope

“Sun Catcher” 50-mm Telescope

Explore Scientific’s “Sun Catcher” telescope allows for a safe, zoomed-in view of the total solar eclipse on a budget. This version comes with a 50-millimeter lens. ($20 on Amazon)

Why we love it: These telescopes are relatively affordable, lightweight and compact. They contain an ISO-rated safety filter that can be removed after the solar eclipse, making it useful for year-round stargazing – no eclipse necessary!

Buy “Sun Catcher” 50-mm Telescope from Explore Scientific USA.

Next: Catch even more sun!

"Sun Catcher" 70-mm Telescope

“Sun Catcher” 70-mm Telescope

This 70-mm version of Explore Scientific’s “Sun Catcher” telescope gives you an even better look at the sun during the eclipse. ($60 on Amazon).

Why we love it:These telescopes are relatively affordable, lightweight and compact. They contain an ISO-rated safety filter that can be removed after the solar eclipse, making it useful for year-round stargazing – no eclipse necessary!

Buy “Sun Catcher” 70-mm Telescope from Explore Scientific USA.

Next:A handy little telescope

iOptron Solar 60 with Electronic Eyepiece 8506

iOptron Solar 60 with Electronic Eyepiece 8506

Safely zoom in on a solar eclipse or check out the sunspots any other time with iOptron’s Solar 60 telescope. It comes with a removable solar filter, a hand controller, a 14,000-object database, an electronic eyepiece, a tripod and a carrying case. ($349 on Amazon)

Why we love it: Because this telescope is computerized, it can automatically locate objects in the sky with the touch of a button. It’s not just for watching eclipses – you can also look at stars, galaxies and planets.

Buy iOptron Solar 60 with Electronic Eyepiece 8506 on Amazon.com.

see more on https://www.space.com/37262-solar-eclipse-gear.html

Why Are Atheists Generally Smarter Than Religious People?


Post 8415

Why Are Atheists Generally Smarter Than Religious People?

Credit: patrice6000/Shutterstock

For more than a millennium, scholars have noticed a curious correlation: Atheists tend to be more intelligent than religious people.

It’s unclear why this trend persists, but researchers of a new study have an idea: Religion is an instinct, they say, and people who can rise above instincts are more intelligent than those who rely on them.

“Intelligence — in rationally solving problems — can be understood as involving overcoming instinct and being intellectually curious and thus open to non-instinctive possibilities,” study lead author Edward Dutton, a research fellow at the Ulster Institute for Social Research in the United Kingdom, said in a statement. [Saint or Spiritual Slacker? Test Your Religious Knowledge]

In classical Greece and Rome, it was widely remarked that “fools” tended to be religious, while the “wise” were often skeptics, Dutton and his co-author, Dimitri Van der Linden, an assistant professor of psychology at Erasmus University Rotterdam in the Netherlands, wrote in the study.

The ancients weren’t the only ones to notice this association. Scientists ran a meta-analysis of 63 studies and found that religious people tend to be less intelligent than nonreligious people. The association was stronger among college students and the general public than for those younger than college age, they found. The association was also stronger for religious beliefs, rather than religious behavior, according to the meta-analysis, published in 2013 in the journal Personality and Social Psychology Review.

But why does this association exist? Dutton set out to find answer, thinking that perhaps it was because nonreligious people were more rational than their religious brethren, and thus better able to reason that there was no God, he wrote.

But “more recently, I started to wonder if I’d got it wrong, actually,” Dutton told Live Science. “I found evidence that intelligence is positively associated with certain kinds of bias.”

For instance, a 2012 study published in the Journal of Personality and Social Psychology showed that college students often get logical answers wrong but don’t realize it. This so-called “bias blind spot” happens when people cannot detect bias, or flaws, within their own thinking. “If anything, a larger bias blind spot was associated with higher cognitive ability,” the researchers of the 2012 study wrote in the abstract.

One question, for example, asked the students: “A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the ball cost?” The problem isn’t intuitive (the answer is not 10 cents), but rather requires students to suppress or evaluate the first solution that springs into their mind, the researchers wrote in the study. If they do this, they might find the right answer: The ball costs 5 cents, and the bat costs $1.05.

If intelligent people are less likely to perceive their own bias, that means they’re less rational in some respects, Dutton said. So why is intelligence associated with atheism? The answer, he and his colleague suggest, is that religion is an instinct, and it takes intelligence to overcome an instinct, Dutton said. [8 Ways Religion Impacts Your Life]

The religion-is-an-instinct theory is a modified version of an idea developed by Satoshi Kanazawa, an evolutionary psychologist at the London School of Economics, who was not involved in the new study.

Called the Savanna-IQ Interaction Hypothesis, Kanazawa’s theory attempts to explain the differences in the behavior and attitudes between intelligent and less intelligent people, said Nathan Cofnas, who is pursuing a doctorate in philosophy at the University of Oxford in the United Kingdom this fall. Cofnas, who specializes in the philosophy of science, was not involved with the new study.

The hypothesis is based on two assumptions, Cofnas told Live Science in an email.

“First, that we are psychologically adapted to solve recurrent problems faced by our hunter-gatherer ancestors in the African savanna,” Cofnas said. “Second, that ‘general intelligence’ (what is measured by IQ tests) evolved to help us deal with nonrecurrent problems for which we had no evolved psychological adaptations.”

The assumptions imply that “intelligent people should be better than unintelligent people at dealing with ‘evolutionary novelty’ — situations and entities that did not exist in the ancestral environment,” Cofnas said.

Dutton and Van der Linden modified this theory, suggesting that evolutionary novelty is something that opposes evolved instincts.

The approach is an interesting one, but might have firmer standing if the researchers explained exactly what they mean by “religious instinct,” Cofnas said.

“Dutton and Van der Linden propose that, if religion has an instinctual basis, intelligent people will be better able to overcome it and adopt atheism,” Cofnas said. “But without knowing the precise nature of the ‘religious instinct,’ we can’t rule out the possibility that atheism, or at least some forms of atheism, harness the same instinct(s).”

For instance, author Christopher Hitchens thought that communism was a religion; secular movements, such as veganism, appeal to many of the same impulses — and possibly ‘instincts’ — that traditional religions do, Cofnas said. Religious and nonreligious movements both rely on faith, identifying with a community of believers and zealotry, he said.

“I think it’s misleading to use the term ‘religion’ as a slur for whatever you don’t like,” Cofnas said.

The researchers also examined the link between instinct and stress, emphasizing that people tend to operate on instinct during stressful times, for instance, turning to religion during a near-death experience.

The researchers argue that intelligence helps people rise above these instincts during times of stress. [11 Tips to Lower Stress]

“If religion is indeed an evolved domain — an instinct — then it will become heightened at times of stress, when people are inclined to act instinctively, and there is clear evidence for this,” Dutton said. “It also means that intelligence allows us to be able to pause and reason through the situation and the possible consequences of our actions.”

People who are able to rise above their instincts are likely better problem-solvers, Dutton noted.

“Let’s say someone had a go at you. Your instinct would be to punch them in the face,” Dutton told Live Science. “A more intelligent person will be able to stop themselves from doing that, reason it through and better solve the problem, according to what they want.”

The study was published May 16 in the journal Evolutionary Psychological Science.

Original article on Live Science.